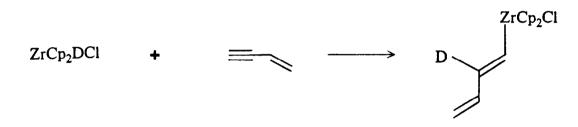

Tetrahedron Letters,Vol.27,No.14,pp 1537-1540,1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

TRANSITION METAL DIENYLS IN ORGANIC SYNTHESIS: A CONVENIENT PREPARATION OF σ -bonded tin AND ZIRCONIUM DIENYLS

Michael D. Fryzuk^{*1}, Gordon S. Bates and Charles Stone Department of Chemistry University of British Columbia Vancouver, B.C. CANADA V6T 1Y6

Abstract: Chemoselective hydrozirconation of 1-ene-3-yne molecules using $(\eta^5-C_5H_5)_2$ ZrHCl, 1 represents the first general synthesis of zirconium dienyls, which, via transmetallation, can be stereoselectively transformed into synthetically useful tin dienyl derivatives.


The ability to utilise specifically functionalised 1,3-dienes in the Diels-Alder reaction is attractive, particularly if the functional groups can either activate the diene and/or are useful for subsequent elaboration. Typical modifications involve 1,3-dienes substituted with heteroatoms such as oxygen, sulfur or nitrogen-type donors.² In an effort to take advantage of this carbon-carbon bond forming reaction, we have extended the strategy to the synthesis and reactivity of 1,3-dienes which incorporate a transition metal moiety at either the 1- or the 2- position (A and B respectively).

While transition metal complexes that contain 1,3-dienes bound in an η^4 fashion are commonplace³, derivatives that have a transition metal σ -bonded to a diene are exceedingly rare^{4,5}. Although the ability of metal-carbon σ -bonds to undergo further elaboration is well known⁶, the influence of a transition metal unit on the reactivity of a diene, when the metal is σ -bonded to that diene, is virtually unknown⁴. We report here the synthesis of modified dienes of the type A where ML_n is $(\eta^5-C_5H_5)_2$ ZrCl, and their transformation to organotin dienyl derivatives via a stereoselective transmetallation sequence⁷. One route to these types of molecules involves the hydrozirconation of 1-ene-3-yne molecules 2a - 2d,^{8,9} as shown in Table 1.

These reactions proceed smoothly in a few hours at room temperature to generate the corresponding dienyl derivatives 3a - 3d in good yields (75-90%). A typical preparation for 3a - 3d involves portionwise addition of $(n^5-C_5H_5)_2$ ZrHCl, 1, to a stirred solution of 2a - 2d

in toluene. The completion of the reaction is indicated by formation of a homogeneous solution. The chemoselectivity of this reaction is quite remarkable; even though hydrozirconation of the alkene functionality is well established¹⁰, we observe a complete preference for the alkyne over the alkene group, even for vinylacetylene $2a^{11}$. To our knowledge, this is the first time that this type of chemoselectivity for metal-hydride addition has been observed¹². The reaction of the deuterated analogue of $\frac{1}{2}$, $(\eta^5-C_5H_5)_2$ ZrDCl, with these l-ene-3-yne molecules is also revealing since the deuteron label is incorporated exclusively at the β -carbon, cis to the $(\eta^5-C_5H_5)_2$ ZrCl molety.

While the stereochemistry of the Zr-D addition to the alkyne functionality is not contentious 10 , these reactions do suggest that the observed chemoselectivity is a kinetic preference for the alkyne versus the alkene rather than a thermodynamic preference.

Not only is the hydrozirconation procedure of 1-ene-3-yne molecules a general route to the required zirconium dienyl complexes, but these zirconium products are in turn useful reagents for the synthesis of a host of other metal or metalloid dienyl derivatives via transmetallation. Zirconium alkenyl derivatives transmetallate to a variety of Lewis acidic metal halides (i.e., HgCl₂, AlCl₃, PdCl₂, CuCl)^{6b}. We have extended this reaction type to include organotin reagents¹³. For example, the reaction of the zirconium dienyl complexes 3a and 3c with n-Bu₂SnCl in toluene at 100°C results in smooth formation of the corresponding tin dienyl complexes 4a and 4c in good yields, (75% and 90% respectively). The best yields for 4b and 4d (60% and 65% respectively) were obtained by reaction of 3b and 3d with n-Bu₂SnCl in toluene at room temperature for 5-7 days. These complexes are readily separated from $(\eta^5 - C_5 H_5)_2 ZrCl_2$ by extraction with hexanes and filtration. We have confirmed that these reactions are stereoselective by ¹H NMR. In fact, the combination of the hydrozirconation of the 1-ene-3-yne molecules and the subsequent transmetallation to tin is an expedient synthesis of the organotin dienyl derivatives 4a - 4d. In comparison to the five step literature synthesis of $4a^{14}$, our procedure represents a significant and practical improvement.

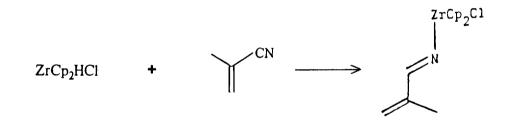
Further work from our laboratory is focussing on the Diels-Alder reactions of these zirconium and tin dienyl reagents; in addition, we are expanding on the transmetallation theme.

ENTRY	1-ene-3-ynes ^b	ZIRCONIUM DIENYLS	TIN DIENYLS
1	2a	ZrCp ₂ C1	n-Bu ₃ Sn
2	OMe	ZrCp ₂ Cl OMe <u>3b</u>	n-Bu ₃ Sn OMe
3	<u>=</u> -√_> 2 <u>−</u>	ZrCp ₂ C1	n-Bu ₃ Sn
4		ZrCp ₂ C1	MeO 4d

Table 1. Synthesis of Organotin Dienyls via Hydrozirconation of 1-ene-3-ynes with ZrCp₂HCl and subsequent transmetallation.^a

Satisfactory microanalysis, high resolution ${}^{1}\mathrm{H}$ and ${}^{13}\mathrm{C}$ NMR and IR spectra were obtained for all compounds synthesised

- (a) Cp denotes $\eta^5 C_5 H_5$
- (b) 2a and 2d are commercially available from Pfaltz and Bauer and The Aldrich Chemical Co., respectively.


Acknowledgment

Financial support was provided by NSERC of Canada in the form of operating grants (M.D.F. and G.S.B.), and the Alfred P. Sloan Foundation (M.D.F.).

1540

References

- 1. Fellow of the Alfred P. Sloan Foundation (1984-86).
- 2. Grayson, J.I.; Petrzilka, M. Synthesis 1981, 753.
- Marr, G.; Rockett, B.W., in "The Chemistry of the Metal-Carbon Bond," Vol. I, Ed. Hartley, F.R.; Portai, S., Chapter 9, p. 237; John Wiley and Sons (1982), and refs. therein.
- 4. (a) Helquist, P.; Kerber, C; Kuo, G. <u>Organometallics 1984</u>, <u>3</u>, 806. (b) Bauch, T.E.; Belmonte, J.E.; Belmonte, P.A.; Giering, W.P.; Waterman, P.S. <u>J. Organomet. Chem. 1985</u>, 294, 235.
- 5. Fahey, D.R.; Mahan, J.E. J. Am. Chem. Soc. 1977, 99, 2501.
- 6. (a) Hart, D.W.; Schwartz, J. J. Am. Chem. Soc. <u>1974</u>, <u>96</u>, 8115.
 (b) Carr, D.B.; Schwartz, J. J. Am. Chem. Soc. <u>1979</u>, 101, 3521.
- 7. Carr, D.B.; Schwartz, J. J. Am. Chem. Soc. 1977, 99, 638.
- For synthesis of <u>2b</u> and <u>2c</u> see: Brandsma, L. "Preparative Acetylenic Chemistry", Elsevier, Amsterdam, 1971.
- Although 2b was synthesised as a 4:1 E:Z mixture of geometric isomers, reaction of a 20% excess of 2b with 1 resulted in clean formation of 3b.
- 10. Labinger, J.A.; Schwartz, J. <u>Angew. Chem. Int. Ed. Engl. 1976</u>, <u>15</u>, 333 and refs. therein.
- 11. Similar selectivity was observed in reaction of 1 with α,β -unsaturated nitriles e.g., methacrylonitrile.

- For an example of chemoselective hydroboration of 2c see: Clark, G.M.; Polston, N.L.; Zweifel, G. J. Am. Chem. Soc. 1971, 93, 3395.
- Reference 6(b) alludes to transmetallation reactions of zirconium alkenyl complexes with SnCl₄.
- McN. Sieburth, S.; Petraitis, J.J.; Singh, S.K.; Wender, P.A. <u>Tetrahedron</u> 1981, <u>37</u>, 3967.

(Received in USA 31 December 1985)